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Atomically precise Si:P devices

• Decreased number of donors from 4000 to the single donor limit

• ~7 donor quantum dot: surprisingly dense excitation spectrum 
observed → can be explained by valley splitting

• Effective mass calculations: valley splitting of dot states   

• Single donor limit: evidence for excited states of a single P in Si

• Strategies for charge sensing

• STM allows for atomically precise patterning of donor structures

• Goal: down-scaling to a single P donor
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STM-patterned Si:P donor based quantum dots

A. Fuhrer, et al., Nano Lett. 9, 707 (2009)
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• Increased device yield now allows statistical study of device behaviour

• We fabricated a series of tunnel gaps to determine the effect of the gap 
geometry on the tunnel resistance

Tailoring the tunneling resistance



tunnel gap device

• Gap aspect ratio (w/d) determines transport characteristics

• These results allow us to predict device behaviour and improve device design

d = separation

w = lead width

20 nm
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Tailoring the tunneling resistance



STM based fabrication
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Single crystal few-electron quantum dot

50nm

• 4 terminal quantum dot (4.6 x 4.6nm²)

• S,D leads, quantum dot, and gates are planar, highly P doped silicon

• Fully epitaxial structure, avoiding interface and surface related challenges

57

44



• STM allows for direct counting of H-desorbed Si dimers/adsorption sites

Accurate estimation of  the number of donors 

Overlay grid with dimer row 
spacing

5nm

H lithography mask on Si(001)

* S. R. Schofield, et al., Phys. Rev. Lett. 91 (2003)
H. F. Wilson, et al., Phys. Rev. Lett. 93 (2004)
O. Warschkow, et al., Phys. Rev. B 72 (2005)

• Statistical incorporation study for similar dot sizes 7 donors most likely 

Possible P incorporation sites

Single dangling bonds

• Detailed P incorporation mechanism previously studied*:         

3 adjacent dimers are required for 1 P atom to incorporate



Stability Plot at mK temperatures
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• Surprisingly high density of lines of increased conductance

• Charge offset stability:  < 0.01e over two days (within 30mV gate window)

• Gate voltage dependence of tunnel barriers: 

Increase in device conductance   change in coupling asymmetry

• Rise in addition energy as electron occupation is lowered few-electron dot

Eadd=EC+ΔE



Control of dot barrier asymmetry
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• VG1 > 0: we predominantly observe lines with positive slope 

stronger tunnel coupling to D (higher gap aspect ratio: 0.61 > 0.58)

9.2 10

5.3 6.1

• Gate G1 shifted towards D: coupling asymmetry changes with gate voltage
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• Close-up of transition close to VG=0 reveals even higher density of resonant features

N~7 N+1

Surprisingly dense excitation spectrum

What is the origin of the resonant features?

...

...

• Average level spacing  ΔE ~ 130μeV 
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Can these resonances be attributed to orbital excited states?

Estimate for the mean level spacing for laterally 

confined dots*:

approx. 4.6x4.6 nm 2

10nm

Assume max. degeneracy factor g = gspin x gvalley =  2 x 6

The tight lateral confinement cannot account for the dense excitation spectrum 

~ 12 meV

[m*ave = 0.28 me from G. Qian, et al., Phys. Rev. B 71, 045309 (2005)]

*L.P. Kouwenhoven et al.,  NATO Advanced Study Inst. on Mesos. Electron. Transp. (1997)

Assume an effective mass m*ave = 0.28 me



• Quasi 1D transport in narrow (~6nm) S,D leads 

Spacing of 1D subbands (for harmonic confinement)
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Can they be density-of-states fluctuations in the leads?

5.3

6.1

10nm
Assume g=12 and m*=0.28me

Assume barrier height V=100meV (from detailed tunnel gap studies)

The tight lateral confinement of the leads cannot account for the dense 
excitation spectrum 

meV 7≈Δ nE



Valley splitting in silicon devices

M. Friesen, et al., Phys. Rev. B 75, 115318 (2007)

T. B. Boykin, et al., Appl. Phys. Lett. 84, 115 (2004)

Valley splitting  
oscillates as a 
function of well 
width

S. Goswami, et al., Nat. Phys. 3, 41 (2007)

Valley splitting is 
controllable via gate 
voltage and B

S.Lee, Purdue
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functions 

valley splitting

• valley splitting comparable in size to Zeeman splitting  
valley states vs. spin states

• valley degeneracy can be a source of decoherence

B. Koiller, et al., Phys. Rev. Lett. 88, 027903 (2002)
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Effective mass modelling of 7 donor dot

• Treat ions as 2D jellium of positive charge with circular symmetry

σ = const, r =1.15nm

M. Friesen, M. Eriksson, Madison

r

EF

electrostat. potential

Δ subband

Γ1 subband 

Γ2 subband

• Assume constant charge density from P δ-doped Si

doping profile

• Self-consistently solve for charge density and energy levels using an
effective mass approach

Δ subband

Γ subbands

total density

doping profile

[m*t = 0.21me and m*l=0.95me
from G. Qian, et al., Phys. Rev. B 71, 045309 (2005)]



Δ subband

Γ subbands

total density

Modelling of 1D source and drain leads

• Treat source and drain leads as an infinite 6nm wide wire

• Assumed orientation of 45 + 1.5 degrees from crystallographic [100] axes

Δ subband minima

Γ1 subband minima

electrost potential

Γ2 subband minima

EF

σ = const

M. Friesen, M. Eriksson, Madison

6nm

L = 8

<010>

<100>

45°+1.5°

<110>



EF EF

lead dot

EF

(energy spectra aligned at their Fermi levels)

• Subband spacing on the order of 10s of meV 
• It is unlikely that the valley split Δ states are 

aligned exactly at EF to contribute to 
observed low-lying spectrum 

Comparison of 2D, 1D and 0D density of states in Si:P

• 3 “shells” occupied: Γ1, Γ2 and Δ
• Valley splitting of Δ states on the order 

of 1meV at EF

M. Friesen, M. Eriksson, MadisonD. Carter, et al. Phys. Rev. B 79, 033204 (2009)

Valley 
degeneracies 
lifted due to 1.5˚
misalignment from 
[110] 

E 
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The observed spectrum at small bias voltages is due to electronic states in the leads 



Calculated transport spectrum of a 7 donor symmetric dot
E
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ΔEF=0

-81 meV

-14 meV

ground state (4-fold degenerate)

• For 3 electrons in Δ shell: there are 56 possible configurations with 8 different energies 

(2 to16-fold degenerate)

• In addition, all levels are 2-fold spin degenerate

1st excited state 
(2-fold)

highest 
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Realistic asymmetric dot: splitting of remaining degeneracy

• We use a perturbation approach to include dot anisotropy
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The remaining degeneracies are lifted (except for spin)

Modelling:    avg. level spacing ~300μeV 

Good qualitative agreement with the observed spectrum

The observed resonances are due to valley splitting in the quantum dot



Realistic asymmetric dot: splitting of remaining degeneracy

• We use a perturbation approach to include dot anisotropy
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The remaining degeneracies are lifted (except for spin)

Modelling:    avg. level spacing ~300μeV 

Experiment: avg. level spacing ~100μeV

35 40 45 50 55 60 65
-3

-2

-1

0

1

2

3
 

V SD
 (m

V)

VG1 (mV)
0

1

2

 

R
es

on
an

ce
 s

pe
ct

ru
m

 (m
eV

)

Good qualitative agreement with the observed spectrum

The observed resonances are due to valley splitting in the quantum dot



• We have a decreased the desorbed dot area (1.7 x 1.7 nm2)

• From desorption statistics: 

1-3 donors most probable due to edge effects

How does the valley splitting change in the single donor limit?



Spectroscopy consistent with single donor

• The addition energy is consistent with the D0 ground state of a P donor 

45±2 meV

D0

D0 D0 D+

1s(T
1 )

1s(E)

• The excited state resonances are consistent with transitions of a single 

P donor in bulk Si  (visible at either end of the D0 diamond)

• Additional lines may be due to van Hove singularities of the leads 
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modeling provides consistent explanation for all transport resonances observed



• We demonstrate the ability to  pattern a second quantum dot as a SET detector

Further optimization of the device design is necessary

Towards charge detection in an in-plane architecture 

F. Hofmann, et al., Phys. Rev. B 51 (1995)

stability diagram of SET dot at 4Kparallel double dot structure gate leakages

• The gating ranges match with device design

• The SET charging energy is in agreement with FastCap calculations (≤ 5meV)



Slinker, et al., 
August 2005, 700 elect.

Sakr, et al.,
November 2005, 30 elect.

Berer, et al.,
April 2006, 25 elect.

Klein et al.,
January 2007, 7 elect.

Simmons, et al.,
November 2007, 1 elect.

Number of electrons in gated quantum dots

Si/SiGe

Elzerman et al.,
April 2003, 1 elect.

Ciorga et al.,
April 2000, 1 elect.

Meirav et al.,
Kouwenhoven et al.,

others...

GaAs

Field et al.,
March 1993, 500 elect.

Huge quantity of work:
Kouwenhoven, Marcus, Westervelt, 

Tarucha, Fujisawa, Heiblum, 
McEuen, ...

(courtesy of M. Eriksson)
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January 2009, 4000 elect.
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Fuechsle 
2009, ~7 elect.

Scappucci
~700 elect.

Mahapatra
2009, ~1 elect

(STM patterned)



Summary

• We have decreased the number of donors from 4000 to ~1

• Valley splitting leads to a dense excitation spectrum in a 
7 donor based quantum dot with an energy of 100μeV

• This splitting is reduced at the level of single donors.

• Effective mass theory provides an efficient means to 
analyze complex donor structures in silicon

• Strategies underway to control valley splitting: using lower 
carrier densities and strain.

• We have demonstrated the integration of a second dot 
towards the goal of an in-plane charge sensor


	The importance of valley splitting �in few-electron �donor based quantum dots in silicon 
	Atomically precise Si:P devices
	Single crystal few-electron quantum dot
	Summary

