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¢ Brief introduction to laser-plasma acceleration

*** Motivation for study of THz

. Noninvasive diagnostic for accelerator p
II.  High-intensity source is good for appli

¢ THz generation and Char
l. Coherent Transition Radiati

Il. Electro-Optic Sampling
lll. Single-shot detection
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Acceleration in a conventional RF Accelerator

COlOer Accelerator Structure el
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/\/\/ Radio Frequency electric field (E,_.)
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electron beam energy




‘... Marine Wakefield

BERKELEV LAB

Longitudinal Wake Radial Wake Driving Pulse
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1| Electrons surf on a plasma wave

BERKELEY LAB

Injected Out o

Injected Electrons
Self Injection
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’\I ‘.ﬁ Laser Wakefield Generation:
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'::}l § Using Wakefields to Accelerate Electrons £
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Laser Pulse

Gas Jet
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’;\“ A Recent Progress in Laser Plasma
Acceleration

Geddes et al,, Nature 431, 538 (2004) 9 TW: 86 MeV/c
Ap = 4 MeV/c FWHM*
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Leemans et al., Nature Physics 2, 696 (2006) 40TW, 1 GeV/ C,
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Motivation for studying THz
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1. THz as a bunch diagnostic: = -
L rost E-field
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2. THz as a unique source:

» Remote Sensing
» Rapid 2D Imaging of biological and
semiconductor samples
» Pump-Probe Experiments
e E;,,, ~ 0.01-10 MV/cm (traditional
sources: E;,, ~ 0.1 MV/cm)
e intrinsic synchronization with laser,
electrons, x-rays, etc.




)ﬁlA
(oo rs

|||‘

THz Radiation as an
Electron Bu
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Measurement of electron bu
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r\l ‘4 Transition Radiation is Emitted by electrons =W

’\ passing an Interface
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(high cutoff)
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THz Collection Geometry

800 nm Probe Beam ——— / /mlarizer
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e 1 1|1 Electro-Optic Sampling Method

BERKELEY LAB
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E-O Crystal

(e.g. GaP) A/4 Plate

Optical Electro-Optic Sampling:

Probe \

Time-Dependent
E-field E(t)

1. High electric field of THz polarizes
crystal atoms, inducing birefringence
Probe transmission:

s () =5 (Lsin ()

2. Optical probe (laser pulse) “samples”
the birefringence.

2
r(t) = 7” Ln’r, E(t)
0
is the phase retardation

E-field
Induced
birefringence

3. Amplitude modulation is recorded
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TEX Detection Method
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Temporal Electric-field Cross-correlation (TEX)
’ Matlis et al, Submitted to JOSA B TEX-og ram

Chirped
Probe Puls

Short
Reader
Pulse

Polarizer

Modulated Probe

MAplate E-field: E(t) EO Xtal

1. Variation of THz E-field in space and time i

2. Spectral interference of probe and reade
re Cove ry: TEX Interferogram without THz
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How TEX works

TEX Interferogram without TH. TEX FFT{t) without THz

760 770 780 780 800 810 820 830 840
Wavelength [nm] time [ps]

TEX Interferogram with THz TEX FFT(t) with THz

760 770 780 780 800 810 820 830 840
Wavelength [nm]

time [ps]
fwe [ba]

S(0) =[E, (@) +[E (@) ct)=[" E,(E; (r -ty
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)’\I . THz resolves variation in accelerator

performance during parameter scans

Geddes et al. PRL (2008)

Leemans et al. Phys Plasmas (2001) Example: scan of gas-jet position
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Focus on Gas Jet Leading Edge

* higher energy e-bunches
* higher n,y production

ll Focus on inside Gas Jet

* lower energy e-bunches

* lower n,y production
* less Coulombic expansion * more Coulombic expansion

* expect higher THz frequencies  expect lower THz frequencie
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f\“ . THz spectrum correlates with
rreeees ‘m

accelerator performance
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*’\l . Bunch properties can be inferred from

spatio-temporal model

r THz Spectral Image (Data)
Spatio-temporal Waveform o [
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e  Physics of THz emission is elucidated

e Spatio-spectral analysis of THz wav
two bunch structure (90% at 420 f
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Summary

1. Laser Plasma Accelerators offer potential for a low-cost alternative
for electron acceleration

2. Coherent THz Transition Radiation is generated at pl
e Source of high-field THz pulses for applications
* THz emission provides a non-invasive bunch diagnost

3. Temporal Electric-field Cross-correlati
* TEX provides high-resolution spatial & t
measurements of THz waveforms for t

e TEX used to determine 2-component
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