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The EM Spectrum

THE ELECTROMAGNETIC SPECTRUM
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The Terahertz (THz) Gap

“The most scientifically rich, yet underutilized region of the EM spectrum” —Tom Crowe
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THz Science: collective excitations, protein motions

& dynamics, superconductor gaps, magnetic
resonances, terabit wireless, medical imaging,

security screening, detecting explosives & bio agents ...

“Much brighter terahertz beams are required for scientific
and technological applications ... Large average and peak powers could
be used to manipulate and alter materials, chemical reactions and
biological processes.”

-Mark Sherwin, Nature News & Views 520, 131 (2002).




Why THz?

Low-Frequency Vibrations; ie
Torsions, Hydrogen-Bond Large-amplitude motions
Stretches and Bends

Biomolecules fold using large amplitude motions into the
correct shape to function in biological systems.

This sensitivity can be used to monitor such motions, or to
identify complex (biological) molecules.
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Why THz: High Specificity

THz Spectra for parallel and antiparallel forms of trialanine show
extreme sensitivity to the molecular environment.
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Why THz: |dentify many agents
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Why THz: Detection in the field

Terahertz transmits (at least partially) through many
non-metal materials.

* Detection of bombs, BW & CW throug
suitcases, soill ...
« Stand-off imaging & threat detection
» Security & military applications beginning to be deployed.



Why THz: Detection through objects

Security screening demonstrations

~+ 8 THz image through
briefcase captures
all depths at once.

Sheet explosive
Plastic Gun




Why THz: Imaging
Imaging Applications: L R
* THz is non-ionizing,
and non-destructive
* Time = Depth|
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Why THz: New medical imaging tool

Medical Imaging Applications:
* THz is non-ionizing

» Can probe to some depth

« Some specific spectral signatures

Skin cancer (basal cell carcinoma) image Transmission of a human tooth. Pink
just under the skin (from TeraView) shows location of buried decay.



High-power half-cycle THz pulses

A 100 uJ, half-cycle THz pulse, focused into a volume of 1 mm? or less.

— E-field = [2D¢gy]Y2 ~ 108 V/m (~ 1 MV/cm).

— => Use large electric field to displace atoms in polar solids
(structural phase transitions, soft modes, ferroelectricity, ...)

— H-field =E/c~0.3T

— => Use transient magnetic field to create magnetic/spin
excitations and follow dynamics on ps time scale (e.g., time-
resolved MOKE).

Or, some other shape pulse?

dl (o) =N+ NN=1)7(w)] di (@) I ‘((0) = ‘ [ DA (r )d/-'
dw multiparti cle d oo

=> shape electron bunch profile to control E-field shape (coll. W/J. Neuman, U. Md.)



High-power THz Driven Magnetic Dynamics

Use ultra-short magnetic field pulses to induce spin excitations (D. Arena/ NSLS)
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Exchange interaction 1015

Stoner excitations 10-15-10-14

Spin waves 1012 (low g limit)

Spin - lattice relaxation 1012-10" (in
manganites)

Precessional motion 1010-10°

Spin injection TBD

Spin diffusion TBD

Spin coherence TBD

Soft Ferromagnet Dynamics Time-resolved MOKE on permalloy strip. B.C. Choi et

al PRL 86, 728, (2001)
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Other systems of interest: Dilute Mag. Semiconductors, Manganites.




Transient Magnetization at SPPS/SLAC
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Example:
14 nm thick films of granular CoCrPt
(magnetic recording media)

28 GeV electrons (SLAC), 2.3 ps duration.

I. Tudosa et al, Nature 428 831 (2004).

Sample placed in
the 28 GeV SLAC
beam



THz Spectroscopy Technigques
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Time-domain THz

Electro-optic detection: EO crystal rotates polarization when E-field (THz) is applied.
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Time-domain THz Setup

A typical research time-domain THz spectroscopy setup
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Commercial Time-domain THz

A commercialized time-domain THz spectroscopy setup
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THz Measurement Techniques

Microwave transmitter / receiver / mixer / network analyzers
at high microwave frequencies approaching THz




Quantum Cascade Lasers in the THz

$ Lasing
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Mode confinement by
the top-metal and bottom-
Heavily-doped layers
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Contact

Plasmon Au film

Active region <
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THz Emission GaN or AIN substrate



Free-Electron Lasers in the THz

UCSB FREE-ELECTRON LASER

Kilowatts SOOW Skw

?Tunable terahertz radlatwn
. 120GHz to 48 THz
5mm to 60ym




Coherent THz Synchrotron Light
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JLab FEL & THz facility
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INSL'S

Intense Coherent THz Pulses from the NSLS SDL Linac
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Synchronous THz ultrafast excitations
are needed at all next generation FEL'’s

We are only beginning to explore the effects of high power THz
fields on matter.

Only recently have THz pulses with E-field strengths rivaling
bonding fields in materials (~ V/atom) possible.

With such strong transient electric and magnetic fields, ask:

« Can one switch, or modulate, the collective magnetic state
of a complex oxide at THz frequencies?

« Can one photo-induce a quantum coherent state and,
indeed, superconductivity?

« Can one control magnetic systems (and frustration) on the
ultrafast timescale?

FLASH ‘D\E‘S/;1 SwissFEL




Security

find concealed
weapons

fingerprint chemical and

biological terror materials
in packages, envelopes =
or air =

locate hidden
explosives and
land mines

Communications

see buried
metal layers in
semiconductors

widen
frequency
bands for
wireless
communi-
cation

THz

Many basic

science and novel

applications

A fast-growing
field filling the
“THz Gap”

Most need high
power ultrafast
lasers

!

Medical Imaging
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diagnose

improve skin cancer

rnedical
imaging
spot tooth erosion
earlier than x-rays
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detect dangerous
flaws in space shuttle
components
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navigate through fog






